If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/x^2-1=1000
We move all terms to the left:
1/x^2-1-(1000)=0
Domain of the equation: x^2!=0We add all the numbers together, and all the variables
x^2!=0/
x^2!=√0
x!=0
x∈R
1/x^2-1001=0
We multiply all the terms by the denominator
-1001*x^2+1=0
We add all the numbers together, and all the variables
-1001x^2+1=0
a = -1001; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-1001)·1
Δ = 4004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4004}=\sqrt{4*1001}=\sqrt{4}*\sqrt{1001}=2\sqrt{1001}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{1001}}{2*-1001}=\frac{0-2\sqrt{1001}}{-2002} =-\frac{2\sqrt{1001}}{-2002} =-\frac{\sqrt{1001}}{-1001} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{1001}}{2*-1001}=\frac{0+2\sqrt{1001}}{-2002} =\frac{2\sqrt{1001}}{-2002} =\frac{\sqrt{1001}}{-1001} $
| −2+n=−6 | | q/7+70=77 | | 13x+7+4x+3=180 | | -7x-8x+3x=16 | | 3s-45=4s-78 | | 3+3t=15 | | 0.6666666b+5=20-b | | x+40=4x-53 | | 3a+12+27=42 | | b=2b-37 | | 4(x-9)=-47 | | n/8+69=78 | | 4-6/7x=-6+8/7x | | x+(3x-8)=16 | | 4b-33=b | | w/4−2=1 | | 0.75x+5=-1 | | p+83=6p-42 | | -7/8u=-28 | | 3x+6+x=-30 | | 11=2v+7 | | 86/x=7 | | 5.1x-9.1=1.1 | | 46=2w+10 | | 10-4h=56 | | 4x+9+5x=9(x+1) | | 3x+8+x=x+4+x | | 12a+2+16a+66=180 | | 12=-4.9t^2+24.5t+11.5 | | r-91/2=3 | | 7.2x-5.8=59 | | 8(w-4)-3w=-27 |